RBP数据包—科研祝福大礼包
RBP数据包产品是将多年在RNA和RBPs(RNA结合蛋白)领域研究经验进行分享和祝福的创新性产品。通过构建RBPs的过表达和沉默质粒载体并转染细胞,对其细胞分子相关指标及RNA-seq手段来系统研究每个RBP在细胞中的功能和机制。
该产品具有以下五大特性:
1、 首创性:目前全球范围内尚未有同类产品出售;
2、 规范性:产品质量严格按照文章发表要求,确保用户得到产品即可用于科研论文发表;
3、 唯一性:每个RBP蛋白的同类产品只出售一次,一旦售出,该产品即下架,确保数据的唯一性;
4、 广泛性:产品广泛覆盖已报到的RBP,数量超过2500个;您一定可以从中选择到您所关注的蛋白;
5、 时效性:产品快速交付;您不必再为测序服务漫长的周期和不可预测性而担心。
我们相信该产品能够为广大科研工作者在基金申请,论文撰写和发表,论文选题和学生培养,平台构建和完善以及拓展自己研究领域方面带来好的助力和提升,并且衷心希望我们的祝福能伴随着产品传递给包括一带一路上的广大科研工作者。
[/dt_quote][/vc_column][/vc_row]
RNA结合蛋白(RNA binding proteins, RBPs)自RNA转录起始,就常与之相伴。在RNA寿命的不同阶段,会和不同类型的RBP结合形成核糖核蛋白(RNP)复合体,介导其成熟、转运、定位和翻译过程的调控。真核生物编码的RBP极为多样,通过各自特异的RNA识别和结合机制,调控RNA代谢的方方面面。RBP功能和表达失调对细胞功能和生物体健康都可能带来影响,在OMIM(Online Mendelian Inheritance in Man)数据库中已收录的与遗传性疾病相关的RBP蛋白超过150个(1)。多种神经退行性疾病、癌症中已发现重要的RBP基因突变和功能受损。例如,RNA结合蛋白TPD-43的突变常见于散发性肌萎缩侧索硬化(ALS)和阿兹海默症(AD),FUS/FTLD的突变同样可能是ALS或额颞叶失智症(FTD)的诱因,而它们的致病机理至今仍有争议(2–4)。又如,由部分RNA结合蛋白调控的可变剪接失调是多种癌症的特征(5, 6),针对调控可变剪接的RBP进行药物设计也正在成为癌症研究的新热点(7)。
目前在人类基因组中发现并经过实验证实的RBP已超过2500个(8–10),还有200多个基因编码预测具有RNA结合功能的蛋白(11)。
参考文献:
- Castello,A., Fischer,B., Hentze,M.W. and Preiss,T. (2013) RNA-binding proteins in Mendelian disease. Trends Genet., 29, 318–327.
- Hanson,K.A., Kim,S.H. and Tibbetts,R.S. (2012) RNA-binding proteins in neurodegenerative disease: TDP-43 and beyond. Wiley Interdiscip. Rev. RNA, 3, 265–285.
- D’Alton,S., Altshuler,M. and Lewis,J. (2015) Studies of alternative isoforms provide insight into TDP-43 autoregulation and pathogenesis. RNA, 21, 1419–1432.
- Rogelj,B., Easton,L.E., Bogu,G.K., Stanton,L.W., Rot,G., Curk,T., Zupan,B., Sugimoto,Y., Modic,M., Haberman,N., et al. (2012) Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci. Rep., 2, 1–10.
- Sveen, a, Kilpinen,S., Ruusulehto,A., Lothe,R. a and Skotheim,R.I. (2015) Aberrant RNA splicing in cancer; expression changes and driver mutations of splicing factor genes. Oncogene, 35, 1–15.
- Danan-Gotthold,M., Golan-Gerstl,R., Eisenberg,E., Meir,K., Karni,R. and Levanon,E.Y. (2015) Identification of recurrent regulated alternative splicing events across human solid tumors. Nucleic Acids Res., 43, 1–15.
- Chen,J. and Weiss,W. a (2015) Alternative splicing in cancer: implications for biology and therapy. Oncogene, 34, 1–14.
- Castello,A., Fischer,B., Eichelbaum,K., Horos,R., Beckmann,B.M., Strein,C., Davey,N.E., Humphreys,D.T., Preiss,T., Steinmetz,L.M., et al. (2012) Insights into RNA Biology from an Atlas of Mammalian mRNA-Binding Proteins. Cell, 149, 1393–1406.
- Kwon,S.C., Yi,H., Eichelbaum,K., Fohr,S., Fischer,B., You,K.T., Castello,A., Krijgsveld,J., Hentze,M.W. and Kim,V.N. (2013) The RNA-binding protein repertoire of embryonic stem cells. Nat. Struct. Mol. Biol., 20, 1122–1130.
- Baltz,A.G., Munschauer,M., Schwanh??usser,B., Vasile,A., Murakawa,Y., Schueler,M., Youngs,N., Penfold-Brown,D., Drew,K., Milek,M., et al. (2012) The mRNA-Bound Proteome and Its Global Occupancy Profile on Protein-Coding Transcripts. Mol. Cell, 46, 674–690.
- Sebestyén,E., Singh,B., Miñana,B., Pagès,A., Mateo,F., Pujana,M.A., Valcárcel,J. and Eyras,E. (2016) Large-scale analysis of genome and transcriptome alterations in multiple tumors unveils novel cancer-relevant splicing networks. Genome Res., 26, 732–744.