Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)

RNA结合蛋白(RNA-binding proteins, RBPs)已被认为是调节基因表达的关键因素。RNA在什么时候,什么地点以什么速率被加工,转运和细胞内的翻译控制一直是研究热点。已有的研究表明这些调节是必须的,因为RBP功能的缺失会导致很多不同的遗传和躯体的疾病,例如神经病变,自身免疫缺陷和癌症等。为了发现RBPs是如何对RNA加工产生影响的机制,大量的新技术如RNA免疫共沉淀(RNA immunoprecipitation, RIP),紫外交联免疫沉淀(crosslinking-immunoprecipitation, CLIP)等被广泛使用。当一些高通量测序(-seq)与CLIP方法结合例如, photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP)和individual-nucleotide-resolution CLIP (iCLIP)之后RNA在体内与单核苷酸结合位点的识别将会得到很大改善。然而,当前的CLIP方法在技术上具有一定的挑战性,例如较高的失败率,CLIP-seq文库经常出现极低的complexity:在已发表的279个CLIP数据集中经过PCR重复之后有高达83.3%的CLIP-seq数据会被丢掉。此外当iCLIP由ENCODE进行大量处理时,RBPs文库产生的成功率会地很多,尤其是对那些没有被注释的RNA结合结构域。因此提高文库成功率将显著降低测序成本,极大地提高生物和技术的可重复性,并且可以使低丰度RBPs和很少靶标RNA的RBPs的RBP位点更容易识别。

详情

RNA Duplex Map in Living Cells Reveals Higher-Order Transcriptome Structure

Chang团队的研究者们开发出了一种基于可逆补骨脂素交联(psoralen crosslinking)的方法PARIS,在活细胞中以近碱基对分辨率整体绘制RNA双联结构图谱。研究人员通过在三种人类和小鼠细胞类型中进行PARIS分析,描述了转录组内的常见远程结构、选择性构象及RNA-RNA反式相互作用。并通过对RNA结构进行进化分析,揭示了一些保守的RNA双联结构特征。

详情

Mitochondrial iron chelation ameliorates cigarette smoke–induced bronchitis and emphysema in mice

慢性阻塞性肺部疾病(Chronic obstructive pulmonary disease, COPD)是一种复杂,削弱肺部功能的疾病,主要临床和病理表现包括从气道炎症(慢性支气管炎),肺组织破坏(肺气肿)小气道重塑等(1,2)。COPD的发病机制至今仍然不明确,但是它涉及到肺部对香烟烟雾(cigarette smoke, CS)的异常炎症和细胞反应失调(1)。目前研究表明吸烟和遗传是COPD最大的危险因素(3)。本文作者之前通过对人类全基因组进行全基因组关联分析(genome-wide association studies, GWAS)确定IRP2(也称为IREB2)是COPD的主要候选基因(4-6),此后作者证明IRP2蛋白在COPD患者的肺部含量增加(4)。已有的研究表明IRP2基因位于人类15q25染色体上,该染色体上还包括编码烟碱乙酰胆碱受体的几个部件的基因。此外 GWAS分析表明15q25还与肺癌,外周动脉疾病和尼古丁成瘾相关(7-10)。铁调节蛋白(The iron-regulatory proteins, IRPs)IRP1和IRP2尤其是IRP2负责调节哺乳动物体内细胞铁离子的平衡(11)。IRPs在十二指肠,脊髓和中枢神经扮演非常重要的生理角色,同时IRPs也可能是肺动脉高压和神经性病变等疾病发病原因(12-15)。在细胞内铁耗尽的情况下,IRPs通过与位于mRNA上铁体内平衡基因的铁反应元件(iron-response elements, IREs)结合,导致其翻译被抑制从而降低铁的储存并同时增加铁摄取(12,15)。但是IRP2在肺部的生理功能以及IRP2的mRNA转录还不是很清楚,同时IRP2在肺部暴露在香烟烟雾中COPD发病的响应机制也不是很明确。因此,作者试图通过将COPD实验中小鼠模型和人COPD数据整合,阐述由香烟烟雾引起的COPD中IRP2的功能。

详情