DNA demethylation dynamics in human prenatal germline cells
精子和卵子的融合是动物胚胎发育的起点,不过这一过程并不仅仅是简单的融合。哺乳动物细胞的甲基化模式是在发育中逐渐形成的,在胚胎发育初期,全基因组的甲基化模式会发生明显变化。比如说小鼠胚胎受精之前,雌雄生殖细胞具有较高的甲基化水平,胚胎着床前发生大规模的DNA去甲基化。
We translate sequences to science and industry.
精子和卵子的融合是动物胚胎发育的起点,不过这一过程并不仅仅是简单的融合。哺乳动物细胞的甲基化模式是在发育中逐渐形成的,在胚胎发育初期,全基因组的甲基化模式会发生明显变化。比如说小鼠胚胎受精之前,雌雄生殖细胞具有较高的甲基化水平,胚胎着床前发生大规模的DNA去甲基化。
长链非编码RNAs(lncRNA)是一类长度大于200nt,不编码蛋白质的RNA分子。与mRNAs相识,lncRNA也是由RNA聚合酶II转录,经历剪接和多聚腺苷酸化。根据它们与蛋白质编码基因的相对定位,lncRNA可分为反义转录物(antisense transcripts)、长链基因内非编码RNAs(long intronic noncoding RNAs)和长链基因间非编码RNAs(long intergenic noncoding RNAs, lincRNAs)。有一些lincRNA已被证明在多种生物学过程如剂量补偿、转录调控、表观遗传调控和细胞多能性维持等中发挥重要作用。以往的研究也证实lincRNA在脂肪生成和肌肉组织发育中发挥作用。
选择性多聚腺苷酸化(APA)是一种常见的真核生物前体mRNA转录后加工方式,其结果是从前体mRNA上加工出不同的mRNA。人类约70%基因通过多聚腺苷酸不同而产生各种转录亚型。因此,APA有可能是决定生物体种间差异的重要基因。目前,均已证实APA与多种疾病相关,但其对于肿瘤发生的临床意义、具体分子机制及功能性结果等尚处于研究的起步阶段。
在真核生物中,信使RNA(mRNA)前体剪切和聚腺苷酸化(C/P)是一种机制,令mRNA分子和长链非编码RNA的3’端由RNA聚合酶II切断。聚腺苷酸化位点一般认为位于顺式作用元件的上游或下游区域。与RNA聚合酶II核心启动子区结合的聚腺苷酸化核心信号区是两个蛋白质形成的复合物。哺乳动物中,上游的作用元件有距离聚腺苷酸化位点约40个碱基处的多聚腺苷酸化信号(PAS),位于多聚腺苷酸化信号上游的UGUA元件以及多聚腺苷酸化信号周围的尿嘧啶核苷(U)富集区。下游的作用元件则包括距聚腺苷酸化位点下游100碱基的尿嘧啶核苷(U)和GU富集区。早前的研究表明大部分真核基因在不同生理病理条件下会发生聚腺苷酸化水平和模式的变化,但是细胞中调控聚腺苷酸化的机理尚不清楚。本文中,研究人员结合基因敲除和高通量测序技术来研究聚腺苷酸化的调控机理,多个调控因子,包括:CFI-25/68、PABPN1、PABPC1、Fip1 and Pcf11,被证实在3’端非编码区的聚腺苷酸化事件中发挥重要作用,Fip1 和 Pcf11主要是增强近3’端聚腺苷酸化位点的功能,而CFI-25/68、PABPN1和PABPC1则是增强远3’端聚腺苷酸化位点的功能。受CFI-25/68或Fip1调控的聚腺苷酸化对顺式调控元件具有很强的偏好性,并且位点之间的距离在聚腺苷酸化调控中也起着重要作用。此外,他们还发现内含子的聚腺苷酸位点受到剪接因子的调控,U1主要是抑制靠近基因5’端内含子上的聚腺苷酸事件,而U2则通过促进基因剪接来抑制内含子上的聚腺苷酸事件。当聚腺苷酸位点接近转录起始位点时,PABPN1抑制该转录本的表达,提示PABPN1可能在RNA降解中起作用。受到核心因子调控的聚腺苷酸事件同时也受到细胞分化发育的调控,但趋势截然不同。